From evening drives to navigating a house or a park in the dark, there are so many situations where it'd be handy to slip on a simple pair of night-vision lenses and the world that's beyond human optical perception could be illuminated like never before. This vision could be a reality, with a…
Touché
Now that I’ve read my own comment, I see that it came off harsher then I intended it to. Interpret it literally and not like a sarcastic statement.
Btw, just occurred to me that these would probably not work in a car at all, because regular glass is usually opaque to IR.
The material captures visible light too, so headlights would be brighter, but I wonder if there’s a way to reduce the contrast by either filtering out some wavelengths (like driving glasses) or the material simply not boosting it’s output past a certain level?
If I understood correctly, it captures visible light to use it for the amplification of the IR spectrum.
The article says:
From that, I think it’s suggesting it needs a separate beam of photons to amplify the signal, much like a transistor needs a supply current to amplify the signal it gets.
They also say:
Which sounds like it produces an image showing both the IR and visible spectrum in the visible range.
Mind you, re-readind it, most of the article just talks about IR, so I’m not certain what it’s actually doing. It could just be transparent to the visible spectrum. It wouldn’t be much good for driving if it did that though, the windscreen blocks a lot of IR and you’d need IR headlights!
Yeah, it’s absolutely clear that nothing is clear about its operation.