It’s LoRa on 2.4ghz.
It’s just that chirp signals are easy to decode from a lot of noise.
And they don’t really affect most other modulation techniques. I think you can even have multiple CSS coded signals on the same frequency, as long as they are configured slightly differently.
LoRa is incredibly resilient.
It’s just really really slow
I don’t think it’s “just” LoRa on 2.4ghz, because if it were existing lora devices wouldn’t be able to decode the signals off the shelf, as the article claims. From the perspective of the receiver, the messages must “appear” to be in a LoRa band, right?
How do you make a device who’s hardware operates in one frequency band emulate messages in a different band? I think that’s the nature of this research.
And like, we already know how to do that in the general sense. For all intents and purposes, that’s what AM radio does. Just hacking a specific peice of consumer hardware to do it entirely software side becomes the research paper.
It’s LoRa on 2.4ghz.
It’s just that chirp signals are easy to decode from a lot of noise.
And they don’t really affect most other modulation techniques. I think you can even have multiple CSS coded signals on the same frequency, as long as they are configured slightly differently.
LoRa is incredibly resilient.
It’s just really really slow
I don’t think it’s “just” LoRa on 2.4ghz, because if it were existing lora devices wouldn’t be able to decode the signals off the shelf, as the article claims. From the perspective of the receiver, the messages must “appear” to be in a LoRa band, right?
How do you make a device who’s hardware operates in one frequency band emulate messages in a different band? I think that’s the nature of this research.
And like, we already know how to do that in the general sense. For all intents and purposes, that’s what AM radio does. Just hacking a specific peice of consumer hardware to do it entirely software side becomes the research paper.