fossilesque@mander.xyzM to Science Memes@mander.xyzEnglish · 6 months agoI just cited myself.mander.xyzexternal-linkmessage-square12fedilinkarrow-up14arrow-down10
arrow-up14arrow-down1external-linkI just cited myself.mander.xyzfossilesque@mander.xyzM to Science Memes@mander.xyzEnglish · 6 months agomessage-square12fedilink
minus-squareyetAnotherUser@discuss.tchncs.delinkfedilinkEnglisharrow-up1·edit-26 months agoUnfortunately not an ideal proof. It makes certain assumptions: That a number 0.999… exists and is well-defined That multiplication and subtraction for this number work as expected Similarly, I could prove that the number which consists of infinite 9’s to the left of the decimal separator is equal to -1: ...999.0 = x ...990.0 = 10x Calculate x - 10x: x - 10x = ...999.0 - ...990.0 -9x = 9 x = -1 And while this is true for 10-adic numbers, it is certainly not true for the real numbers.
Unfortunately not an ideal proof.
It makes certain assumptions:
Similarly, I could prove that the number which consists of infinite 9’s to the left of the decimal separator is equal to -1:
...999.0 = x ...990.0 = 10x Calculate x - 10x: x - 10x = ...999.0 - ...990.0 -9x = 9 x = -1
And while this is true for 10-adic numbers, it is certainly not true for the real numbers.