Sounds promising. can’t say I understand all the details.

  • ShaunaTheDead@fedia.io
    link
    fedilink
    arrow-up
    2
    ·
    9 months ago

    I’m going to take a guess because again I’m not an astronomer or a physicist, just a lay person and an enthusiast.

    What Dark Energy does can basically be boiled down to anti-gravity. It’s not exactly that, we’re not really sure what it is, but that’s what effect it has, it’s repulsive in the same way that gravity is attractive. The theory is that space is expanding and the more space between things (like galaxies) the faster they will move away from each other. It’s also been getting faster since the Big Bang.

    We also assumed that black holes didn’t gain much mass unless they absorbed a large body of matter or had an accretion disk – They do gain mass through Hawking Radiation but that’s pretty minuscule. So I think this study has to do with the distribution of matter throughout the universe and the amount of matter in galaxies.

    If black holes have always been as massive as they are today then we would assume that everything would be much closer together and the super massive black holes at the center of galaxies would have gathered more matter than they currently have. So we made the assumption that there must have been some kind of repulsive force that spread everything out. Instead the black holes had less gravitational force than we assumed and so it explains why they didn’t gather more matter into their orbits and everything spread out across the universe in the way we observe it today.

    Again, I’m just guessing based on my limited knowledge. If an astronomer wants to jump in here, please do!