In a statement, Northvolt says its validated cell is more safe, cost-effective, and sustainable than conventional nickel, manganese and cobalt (NMC) or iron phosphate (LFP) chemistries and is produced with minerals such as iron and sodium that are abundant on global markets.
It is based on a hard carbon anode and a Prussian White-based cathode, and is free from lithium, nickel, cobalt and graphite. Leveraging a breakthrough in battery design and manufacturing, Northvolt plans to be the first to industrialize Prussian White-based batteries and bring them to commercial markets.
Reports across the web also say the technology enables the supply chain to become ecologically more sustainable, cheaper, abd less dependent on China.
I’d like to relay this comment from hacker news: https://news.ycombinator.com/item?id=36834046
It seems there’s news of a battery breakthrough every week. I’ve learned to temper expectations, because so many “breakthroughs” turn out to be dead ends. Because it’s not enough for a battery to be incredibly light, or made of abundant materials, or last for ten thousand cycles. It needs to be good at many things and at least okay at most things.
E.g.—
• How much capacity per dollar?
• How much capacity per kilogram?
• How much capacity per litre?
• How quickly can it be charged?
• How quickly can it be discharged?
• How much energy is lost between charging and discharging?
• How predisposed is it to catching fire?
• How available are the materials needed to manufacture it?
• How available are the tools/skills required to manufacture it?
• How resilient is it to mechanical stress, e.g. vibration?
• How much does performance degrade per cycle?
• How much does performance degrade when stored at a high state of charge?
• How much does performance degrade when stored at a low state of charge?
• How much does performance drop at high temperatures?
• How much does performance drop at low temperatures?
• How well can it be recycled at end-of-life?
A sufficiently bad answer for any one of these could utterly exclude it from contention as an EV battery. A battery which scores well on everything except mechanical resilience is a non-starter, for example. Though it might be great for stationary storage. I’m only a layperson and this list is what I came up with just a few minutes of layperson thought. I’m sure someone with more familiarity with battery technology could double the length of this list. But the point is, when you daydream about some hypothetical future battery tech, you need to appreciate just how well today’s lithium chemistries score in so many areas
Isn’t Prussian white super rare too?
Time to put my chemistry to use for something other than covering up the ugly spot in the wallpaper!
Prussian white isn’t really a thing a thing you dig up, it’s a thing you make in a lab or a factory. The nice thing is that you can make it from basic components and basically at room temperatures It’s just sodium, iron, carbon, nitrogen and manganese. Those are incredibly common elements and easy to find anywhere on earth.
Synthesis probably involves some solvents and acids, but nothing overly dangerous. You can make this stuff in a very basic lab with moderately basic precursors.
(although industrial size synthesis is very different from what people publish papers on, so take all this with a grain of salt)
What do you mean, I cannot just buy a 1000 gallon beaker and pour stuff in?! My childhood was a lie.
A surprisingly large number of “chemical reactors” are literally that, but with metal instead of glass beakers.
Yea, but they’re WAY more complex than a giant beaker and if it’s an exothermic reaction, they basically always take extra, cooling and all sorts of control mechanisms, too. By saying, “but they basically are” is very specifically ignoring every single detail about the entire point.
It IS NOT like a giant beaker precisely because it needs all of the extra stuff on top of a giant container.
It’s a natrium-iron cyanide salt. Probably poisonous, not any harder to produce than any other industrial chemical, as long as you automate the process.
Isn’t that one of the colors Bob Ross was always using?
Maybe it’s not easy to produce, but Na2Fe[Fe(CN)6] doesn’t seem like it has any rare raw materials (but I’m a layman and just googled it).
Iron, carbon, and nitrogen? It’s been produced for hundreds of years.
What’s the use case for these batteries? Comments below indicate that they have a lower energy density and use a cyanide compound, which means that they won’t be for personal devices (form factor and safety!). Is the intent for grid scale storage from renewables? Would safety still be an issue (is there any way the cyanide could be evolved off as a gas due to over heating, over charging, etc?)
yes. grid scale storage is always what I heard from these where inexpensive beats density because volume difference is of little concern. In addition it keeps it from using up lithium that is necessary for other uses.