• Kissaki@programming.dev
    link
    fedilink
    English
    arrow-up
    12
    arrow-down
    1
    ·
    edit-2
    2 months ago

    The items don’t seem concise and always clear. But seems like a good, inspiring resource for things to consider.

    If it is expected that a method might fail, then it should fail, either by throwing an Exception or, if not - it should return a special case None/Null type object of the desired class (following the Null Object Pattern), not null itself.

    I’ve never heard of evading null with a Null object. Seems like a bad idea to me. Maybe it could work in some language, but generally I would say prefer result typing. Introducing a result type wrapping or extending the result value type is complexity I would be very evasive to introduce if the language doesn’t already support result wrapper/state types.

      • Kissaki@programming.dev
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        2 months ago

        with this in mind

        With what in mind? Evading NULL?

        Languages that make use of references rather than pointers don’t have this Dualism. C# has nullable references and nullability analysis, and null as a keyword.

        What does your reasoning mean in that context?

        • FizzyOrange@programming.dev
          link
          fedilink
          arrow-up
          4
          ·
          edit-2
          2 months ago

          Languages that make use of references rather than pointers don’t have this Dualism.

          It’s not about references vs pointers. You could easily have a language that allowed “null references” (edit: too much C++; of course many languages allow null references, e.g. Javascript) or one that properly separated null pointers out in the type system.

          I agree with your point though, using a special Null value is usually worse than using Option or similar. And nullptr_t doesn’t help with this at all.

        • lysdexic@programming.devOP
          link
          fedilink
          English
          arrow-up
          1
          arrow-down
          1
          ·
          2 months ago

          With what in mind? Evading NULL?

          Depends on your perspective. It’s convenient to lean on type checking to avoid a whole class of bugs. You can see this either as avoiding NULL or use your type system to flag misuses.

          Languages that make use of references rather than pointers don’t have this Dualism. C# has nullable references and nullability analysis, and null as a keyword.

          C#'s null keyword matches the monadic approach I mentioned earlier. Nullable types work as a Maybe monad. It’s the same concept shoehorned differently due to the different paths taken by these languages.

      • AbelianGrape@beehaw.org
        link
        fedilink
        arrow-up
        1
        arrow-down
        1
        ·
        edit-2
        2 months ago

        “Monadic type” has something like three meanings depending on context, and it’s not clear which one you mean. One of them is common in math, but not so common in programming, so probably not that. But neither “parametric types with a single argument” nor “types that encode a category-theoretic monad” have the property you say, as far as I know.

        I imagine you’re probably referring to the latter, since the optional monad exists. That’s very different from returning null. The inhabitants of Integer in Java, for example, are the boxed machine ints and null. The inhabitants of Optional[Integer] (it won’t let me use angle brackets here) are Optional.of(i) for each machine int i, Optional.empty(), and null.

        Optional.empty() is not null and should not be called a “Null object.” It’s also not of type Integer, so you’re not even allowed to return it unless the function type explicitly says so. Writing such function types is pretty uncommon to do in java programs but it’s more normal in kotlin. In languages like Haskell, which don’t have null at all, this is idiomatic.

  • spartanatreyu@programming.dev
    link
    fedilink
    arrow-up
    9
    arrow-down
    2
    ·
    2 months ago

    This doesn’t seem overly useful.

    It’s a list taken out of a bunch of books with no regard for how something can be the best path in one language and a smell in another language.

    Look at this page for example: https://luzkan.github.io/smells/imperative-loops

    It suggests using functional loop methods (.map(), .reduce(), .filter()) instead of using imperative loops (for, for in, for each) but completely disregards the facts that imperative loops also have access to the break, continue, and return keywords to improve performance.

    For example: If I have an unsorted list of 1000 cars which includes a whole bunch of information per car (e.g. color, year manufactured, etc…), and I want to know if there were any cars were manufactured before the year 1980, I can run an imperative loop through the list and early return true if I find one, and only returning false if I haven’t found one by the end of the list.

    If the third car was made in 1977, then I have only iterated through 3 cars to find my answer.

    But if I were to try this with only functional loops, I would have to iterate through all 1000 cars before I had my answer.

    A website with blind rules like this is going to lead to worse code.

    • mbtrhcs@feddit.org
      link
      fedilink
      arrow-up
      4
      ·
      2 months ago

      …what? At least with Java Streams or Kotlin Sequences, they absolutely abort early with something like .filter().first().

      • metiulekm@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        5
        ·
        2 months ago

        Same in Python, Rust, Haskell and probably many others.

        But apparently JS does work that way, that is its filter always iterates over everything and returns a new array and not some iterator object.